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LS-DYNA and the 8:1 di�erentially heated cavity
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SUMMARY

This paper presents results computed using LS-DYNA’s new incompressible �ow solver for a di�eren-
tially heated cavity with an 8:1 aspect ratio at a slightly super-critical Rayleigh number. Three Galerkin-
based solution methods are applied to the 8:1 thermal cavity on a sequence of four grids. The solution
methods include an explicit time-integration algorithm and two second-order projection methods—one
semi-implicit and the other fully implicit. A series of ad hoc modi�cations to the basic Galerkin �nite
element method are shown to result in degraded solution quality with the most serious e�ects introduced
by row-sum lumping the mass matrix. The inferior accuracy of a lumped mass matrix relative to a
consistent mass matrix is demonstrated with the explicit algorithm which fails to obtain a transient
solution on the coarsest grid and exhibits a general trend to under-predict oscillation amplitudes. The
best results are obtained with semi-implicit and fully implicit second-order projection methods where
the fully implicit method is used in conjunction with a ‘smart’ time integrator. Copyright ? 2002 John
Wiley & Sons, Ltd.

KEY WORDS: �nite elements; LS-DYNA; thermal convection; CFD; Boussinesq equations;
incompressible �ow

1. INTRODUCTION

LS-DYNA is a multi-physics �nite element code that provides a comprehensive set of simula-
tion capabilities for problems ranging from automotive crash-worthiness and occupant safety,
metal forming and �uid–structure interaction to heat transfer, compressible and incompressible
�ow. LS-DYNA’s new incompressible CFD capability is applied to the 8:1 thermal cavity
problem with Ra=3:4× 105, Pr=0:71 as de�ned in the paper by Christon, Gresho and Sutton
in this special issue [1].
The thermal cavity problem is treated with an explicit time-integration method in addition

to semi-implicit and fully implicit second-order projection methods (see Table I). The explicit
time-integration method provides a baseline for comparison with the second-order projection
methods. A number of variations on the formulation and time-integration methods have been
experimented with in the context of the projection methods, and here a subset of the results
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1134 M. A. CHRISTON

Table I. Summary of LS-DYNA solution methods applied to the 8:1 thermal cavity problem.

Time integration methods

Explicit Semi-implicit Fully implicit

Mass matrix Lumped Lumped=consistent Lumped=consistent
Advection 1-pt. centroid 1-pt. centroid or 2× 2 quadrature

2× 2 quadrature
BTD �t=2 uiuj 3�t=8 uiuj N=A
Di�usion 1-pt.+ hourglass 2× 2 quadrature 2× 2 quadrature

stabilization
Buoyancy 1-pt. lumped Lumped or Lumped or

2× 2 consistent 2× 2 consistent

from this experimentation is reported. The fully implicit projection method is new and com-
bines a fully implicit advection treatment in the context of a second-order, incremental projec-
tion method with a variable-step time integrator based on a �xed CFL condition or temporal
error control.
In the following section, a brief summary of the three time-integration methods used for

the 8:1 thermal cavity is presented. In Section 3 the compulsory results are presented with a
summary of the computational performance of the three solution methods. The sensitivity of
the �nite element operators to ad hoc ‘tricks-of-the-trade’ and the associated deleterious e�ects
on the solution quality for the 8:1 thermal cavity are outlined. Finally, Section 4 presents a
brief summary and conclusions.

2. FORMULATION ISSUES

LS-DYNA provides multiple segregated solution strategies for the incompressible Navier–
Stokes that derive from a Galerkin �nite element formulation. In this e�ort, attention has
been restricted to the Q1Q0 element formulation. The Q1Q0 element provides a bilinear
representation of the velocity and temperature with a piecewise constant pressure, i.e. node-
centred velocities and temperature with an element-centered pressure.
Explicit time-integration method: The explicit time-integration method follows the formula-

tion presented in Christon [2, 3] and uses single-point Gaussian quadrature in conjunction with
a row-sum lumped mass matrix and hourglass stabilization. In this formulation, the advective
terms are treated with a second-order explicit scheme that relies on balancing-tensor di�usivity
(BTD), a form of streamline upwinding, while the viscous and thermal di�usion terms are
treated with a �rst-order time integrator yielding conditional stability. In a one-dimensional
sense, the stable time step is

�t6
�x2

�[1 +
√
1 + (u�x=�)2]

(1)

where �=
√

Pr=Ra for the Navier–Stokes equations, and �=1=
√
RaPr for the energy equation.

The explicit method constitutes a blend of �nite element and �nite di�erence philosophies
with a concomitant cost in accuracy—second-order in space, second-order in time and phase
accuracy for the advective terms, and �rst-order in time for the viscous/di�usion terms.
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COMPUTATIONAL PREDICTABILITY FOR THERMAL CONVECTION 1135

Semi-implicit time-integration method: The semi-implicit projection method derives from
the optimal second-order projection method of Gresho and Chan [4, 5]. The semi-implicit al-
gorithm uses Crank–Nicholson for the viscous=di�usion terms while the advective terms are
treated explicitly. The associated BTD terms, that are necessary for second-order temporal
accuracy, are treated via Crank–Nicholson as well. This algorithm remains stable for CFL
numbers of O(5–10). The compulsory data reported in Section 3 were computed using the
semi-implicit projection method with all element-level operators integrated with 2× 2 Gaus-
sian quadrature. However, experimentation with centroid advection has indicated that this
modi�cation exhibits no signi�cant side-e�ects on the 8:1 cavity problem.
Fully implicit time-integration method: The fully implicit projection method uses a sim-

ple linearization of the advective terms with a discrete advective operator that is essentially
skew-symmetric. A variety of choices for the linearized velocities in the advective terms have
been tested with satisfactory results obtained using the simplest choice for the advective ve-
locity �eld, i.e. the lagged velocities. The implicit treatment of the skew-symmetric advection
operator is unique because it provides unconditional stability without resorting to non-linear
solution schemes, e.g. Newton’s method (see Gresho and Sani [6, pp. 797–800]).
In the fully implicit projection method, a Crank–Nicholson time integrator is applied to

all terms in the linearized momentum and energy equations except for the pressure gradient.
There are no additional stabilizing terms, e.g. BTD, that modify the Galerkin �nite element
formulation. Automatic time-step selection for this algorithm is based on either a user-speci�ed
CFL condition or control of the local truncation error in time.
Both the semi-implicit and fully implicit methods are considered to be second-order in

space and time with fourth-order phase accuracy when a consistent mass matrix is used. A
consistent mass matrix was used for all of the compulsory data reported in Section 3 for
the projection methods. The details of the semi-implicit and fully implicit formulations and
implementation in LS-DYNA may be found in Christon [3].
Pressure-Poisson equation and linear algebra: In all three time-integration methods, a

pressure-Poisson equation (PPE) must be solved at each time step. A single factorization is
performed during initialization with one re-solve per time-step. Bandwidth=pro�le minimization
is used for the PPE making the direct solve particularly e�cient due to the 8:1 aspect ratio
in the mesh, i.e. a minimum bandwidth corresponds approximately to the mesh density in the
x-direction. The direct pressure solve yields an RMS divergence that is machine-zero for all
calculations presented here.
The semi-implicit projection method uses a Jacobi-preconditioned conjugate gradient solver

for the momentum and energy equations. In order to treat the non-symmetric operators that
derive from implicit advection treatment, the fully implicit projection method uses a Jacobi-
preconditioned conjugate gradient-squared solver. The solution convergence is de�ned by both
relative and residual error norms, i.e., ‖�x‖=‖x‖6� and ‖b− Ax‖=‖b‖6�. Testing has shown
that the solution metrics for this benchmark problem are not sensitive to the convergence
criteria for �610−5.

3. RESULTS

This section summarizes the compulsory results computed using LS-DYNA along with
the computational resources required for the calculations. Although some testing was done
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1136 M. A. CHRISTON

Figure 1. Grids used for the 8:1 thermal: (a) grid resolution and the minimum grid spacing in the
x- and y-co-ordinate directions, (b) 21×101 grid, (c) close-up of the top of the 21×101 grid.

with initial conditions that are not skew-symmetric, all compulsory data reported here was
computed using the skew-symmetric initial conditions de�ned for the benchmark problem by
Christon et al. [1].
Grid resolution: Four graded meshes have been applied to the benchmark problem with

the grid resolution shown in Figure 1. In each grid, four �xed mesh lines were used to
insure that the hard points used to record the compulsory time-history data were identical
for all grids. The minimum mesh size in the x-direction for the coarse grid was chosen to
place approximately 2 grid points inside the boundary layers on the vertical walls based on the
scaling estimates of Gill [7]). Grids A, B and C were generated in a sequence by approximate
grid-doubling—the hard points used to record the compulsory time-history data and the mesh
grading preclude exact grid-doubling. For grid B+, the horizontal resolution was intentionally
increased only in the regions between vertical walls and the hard-lines, i.e. 06x60:1810 and
0:81906x61.
Compulsory results: Temperature time history plots at ‘point-1’ (de�ned in Christon

et al. [1]) are shown in Figure 2 for all four grids for the explicit method and in Figure
3 for the semi-implicit projection method. The time histories in Figures 2 and 3 reveal sev-
eral signi�cant di�erences between the two methods. The explicit algorithm �nds a steady-state
solution on the coarsest grid (21× 101) as shown in Figure 2(a). On grids B, B+ and C,
the explicit method also takes longer to achieve a periodic solution with a �xed oscillation
amplitude relative to the projection methods, and the oscillation amplitudes in the temperature,
as well as, in the velocity, vorticity and pressure tend to be smaller. These numerical artifacts
are thought to be attributable to the lumped mass matrix and BTD.
In contrast, the semi-implicit projection method appears to be somewhat more ‘energetic’

yielding larger temperature oscillations and achieving a periodic solution relatively sooner
than the explicit method. With the exception of grid B+, the time history plots in Figures 2
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Figure 2. Temperature time history at point-1 using the explicit algorithm on (a) grid-A (21× 101),
(b) grid-B (41× 201), (c) grid-B+ (61× 201), and (d) grid-C (81× 401).
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Figure 3. Temperature time history at point-1 using the semi-implicit projection algorithm with �t=0:05
on (a) grid-A (21× 101), (b) grid-B (41× 201), (c) grid-B+ (61× 201), and (d) grid C (81× 401).
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and 3 show that the amplitude of the periodic temperature oscillation appears to be converging
from below for both the explicit and semi-implicit projection methods. The time-history plots
for grid B+ in Figures 2(c) and 3(c) reveal the sensitivity to changes in the boundary
layer resolution highlighting the fact that grid convergence has not been achieved in these
computations.
The compulsory time history, global and wall data are tabulated for the explicit method

in Table II and for the semi-implicit projection method in Tables III and IV. For all com-
putations, the average, amplitude and period were measured for a duration of approximately
1000 time units (10006t62000). For the explicit method, the stability-limited time-steps
for the four grids were �tA =4:0e-2, �tB =9:25e-3, �tB+ =4:0e-3, and �tC =2:0e-3. This
corresponds to 385, 872 and 1725 time-steps per period on grids B, B+, and C, respectively.
For the semi-implicit projection method, �xed time steps of 0.1 and 0.05 were used corre-
sponding to approximately 35 and 69 time-steps per period, respectively, for each of the four
grids.
For all computations, the skewness error metric �12 was computed, but was found to be

machine zero for the duration of all computations indicating a skew-symmetric temperature
�eld. A global energy balance (Qin − Qout) was monitored for all computations and found
to be machine zero as well. A series of tests were conducted using the skew-symmetric
boundary conditions with the initial temperature �eld randomly perturbed about the average
value by ±20%. In all cases, the skewness error metric achieved a maximum of 0:01 at around
2000 time units and then decayed with time until the skew-symmetric periodic solution was
recovered at approximately 5000 time units.
The fully implicit algorithm was applied to the 8:1 cavity with three time-integration op-

tions: �xed time-step, variable time-step based on a �xed CFL condition, and variable time-step
based on local time truncation error. The �xed time-step and CFL methods yielded results sim-
ilar to the semi-implicit results with similar computational costs. The variable time-step algo-
rithm was applied using an error tolerance of �=2:5e-4, maximum time step of �tmax =0:02,
and maximum scale factor in the time step of DTSF=1:25 (see Reference [3] for details).
The temperature and time-step time histories, and compulsory data are shown in Figure 4 for
grid-A. During the computation on the coarse-grid, the error control constrained the time-step
so that CFL60:5 and approximately 85 time-steps per period were used for the periodic phase
of the solution. The variation of the time-step in Figure 4(b) shows that the time-step grew by
over a factor of 10 during the startup transient and then asymptoted to �t≈ 0:035—slightly
less than the �xed �t=0:05 used with the semi-implicit and fully implicit projection methods.
Computational resources: All computations were performed in serial (single-processor) with

fully optimized code on a DEC Alpha 500AU with a clock rate of 500MHz, total memory of
256Mbytes, and specfp95 rating of 19. Table V shows the memory footprint and CPU usage
statistics for the explicit, semi-implicit and fully implicit methods. Most notable is the small
additional memory cost of the semi-implicit and fully implicit projection methods relative to
the explicit time-integration method.
In order to compare the CPU time between the methods, consider that the explicit method

required 1725 time-steps per period of oscillation using grid-C. In contrast, the semi-implicit
and fully implicit projection methods required only 69 time-steps per period. The consequence
being that while the explicit algorithm requires about 8.8 times less CPU time per time-step,
the strict stability limits results in the explicit algorithm being about 2.8 times more expensive
per period of oscillation. This is due primarily to the stability limits for the explicit algorithm
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Table II. Compulsory point, wall and global data computed using the explicit
time-integration method. The time-steps based on stability corresponding to the four grids

are: �tA =4:0e-2, �tB =9:25e-3, �tB+ =4:0e-3, and �tC =2:0e-3.

Grid: 21× 101 Grid: 41× 201
�xmin: 1.725e-2 �xmin: 8.175e-3
�ymin: 2.987e-2 �ymin: 1.479e-2
Duration: TA ≈ 1000:0 Duration: TB≈ 1000:0

Time Steps=period: – Steps=period: NperB = 385
history
quantity Avg. Amp. Period Avg. Amp. Period

u1 6.098e-2 — — 5.657e-2 2.404e-2 3.562
v1 0.4787 — — 0.4663 3.648e-2 3.562
�1 0.2630 — — 0.2649 1.900e-2 3.562
�12 0.0000 — — 0.0000 — —
 1 −7:482e-2 — — −7:480e-2 3.038e-3 3.562
!1 −2:218 — — −2:422 0.4326 3.562
�P14 −1:407e-3 — — −1:996e-3 9.152e-3 3.562
�P51 −0:5239 — — −0:5315 9.660e-3 3.562
�P35 0.5253 — — 0.5335 4.230e-3 3.562

Nu|x=0 4.579 — — 4.578 3.460e-3 3.562
Nu|x=W −4:579 — — −4:578 3.460e-3 3.562

û 0.2449 — — 0.2405 3.900e-5 3.565
!̂ 3.000 — — 3.014 1.460e-3 3.562

Grid: 61× 201 Grid: 81× 401
�xmin: 5.357e-3 �xmin: 3.977e-3
�ymin: 1.479e-2 �ymin: 7.369e-3
Duration: TB+≈ 1000:0 Duration: TC≈ 1000:0
Steps=period: NperB+ = 872 Steps=period: NperC = 1725

Avg. Amp. Period Avg. Amp. Period

u1 6.195e-2 5.240e-2 3.492 6.112e-2 5.078e-2 3.447
v1 0.4665 7.475e-2 3.493 0.4638 7.260e-2 3.446
�1 0.2661 4.092e-2 3.493 0.2663 3.975e-2 3.447
�12 0.0000 — — 0.0000 — —
 1 −7:400e-2 6.616e-3 3.493 −7:405e-2 6.482e-3 3.446
!1 −2:292 1.0062 3.492 −2:320 0.9866 3.446
�P14 −2:421e-3 1.934e-2 3.493 −2:328e-3 1.891e-2 3.446
�P51 −0:5328 2.040e-2 3.493 −0:5332 2.062e-2 3.446
�P35 0.5357 9.246e-3 3.493 0.5361 9.198e-3 3.446

Nu|x=0 4.578 7.040e-3 3.493 4.579 6.720e-3 3.446
Nu|x=W −4:578 7.040e-3 3.494 −4:579 6.720e-3 3.446

û 0.2401 4.100e-5 3.493 0.2398 3.500e-5 3.446
!̂ 3.015 3.040e-3 3.493 3.016 3.160e-3 3.446

which results in the computational cost increasing by a factor 16 for each factor of 2 increase
in grid resolution.
Some failures: During the course of testing various algorithmic combinations, several fail-

ures were encountered that are brie�y summarized here. The use of a lumped mass matrix
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Table III. Compulsory point, wall and global data computed using the semi-implicit projec-
tion method with �t=0:10 (≈ 35 time-steps per period). All measurements were performed

over a duration of ≈ 1000 time units.
Grid: 21× 101 Grid: 41× 201
�xmin: 1.725e-2 �xmin: 8.175e-3

Time �ymin: 2.987e-2 �ymin: 1.479e-2
history
quantity Avg. Amp. Period Avg. Amp. Period

u1 5.696e-2 4.804e-2 3.615 6.492e-2 6.368e-2 3.542
v1 0.4544 6.900e-2 3.615 0.4576 8.790e-2 3.544
�1 0.2641 3.856e-2 3.614 0.2663 5.022e-2 3.544
�12 0.0000 — — 0.0000 — —
 1 −7:371e-2 6.204e-3 3.614 −7:296e-2 8.160e-3 3.543
!1 −2:161 0.8440 3.614 −2:159 1.2288 3.544
�P14 −4:245e-3 1.888e-2 3.614 −3:797e-3 2.450e-2 3.543
�P51 −0:5347 1.658e-2 3.614 −0:5340 2.436e-2 3.543
�P35 0.5391 1.127e-2 3.614 0.5384 1.472e-2 3.544

Nu|x=0 4.562 6.710e-3 3.614 4.560 8.690e-3 3.544
Nu|x=W −4:562 6.710e-3 3.614 −4:560 8.690e-3 3.544

û 0.2390 1.220e-4 3.614 0.2382 1.110e-4 3.544
!̂ 2.964 3.230e-3 3.614 2.993 3.930e-3 3.544

Grid: 61× 201 Grid: 81× 401
�xmin: 5.357e-3 �xmin: 3.977e-3
�ymin: 1.479e-2 �ymin: 7.369e-3

Avg. Amp. Period Avg. Amp. Period

u1 6.715e-2 6.842e-2 3.531 6.636e-2 6.572e-2 3.526
v1 0.4581 9.300e-2 3.531 0.4584 9.008e-2 3.528
�1 0.2670 5.384e-2 3.531 0.2670 5.164e-2 3.529
�12 0.0000 — — 0.0000 — —
 1 −7:263e-2 8.732e-3 3.530 −7:281e-2 8.412e-3 3.529
!1 −2:133 1.3380 3.531 −2:171 1.2946 3.529
�P14 −3:693e-3 2.602e-2 3.530 −3:628e-3 2.518e-2 3.529
�P51 −0:5341 2.618e-2 3.530 −0:5339 2.570e-2 3.529
�P35 0.5385 1.577e-2 3.530 0.5382 1.506e-2 3.529

Nu|x=0 4.560 9.290e-3 3.531 4.560 8.980e-3 3.529
Nu|x=W −4:560 9.290e-3 3.531 −4:560 8.980e-3 3.529

û 0.2381 1.120e-4 3.531 0.2380 1.100e-4 3.528
!̂ 2.996 4.110e-3 3.531 2.999 4.010e-3 3.529

in the semi-implicit projection method yields a steady solution only on the coarsest grid
(21× 101). For both projection methods, the buoyancy forces require a 2× 2 Gaussian quadra-
ture rule and no row-sum lumping. Row-sum lumping the buoyancy forces while retaining a
consistent mass matrix in the time-integrator yielded oscillation periods that were 20% longer
than for the consistent-mass version on the grid-A (21× 101).
The use of BTD in the semi-implicit projection method yielded preliminary results in which

the temperature oscillation amplitude and period were under-predicted relative to the explicit
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Table IV. Compulsory point, wall and global data computed using the semi-implicit projec-
tion method with �t=0:05 (≈ 69 time-steps per period). All measurements were performed

over a duration of ≈ 1000 time units.
Grid: 21× 101 Grid: 41× 201
�xmin: 1.725e-2 �xmin: 8.175e-3

Time �ymin: 2.987e-2 �ymin: 1.479e-2
history
quantity Avg. Amp. Period Avg. Amp. Period

u1 5.713e-2 4.996e-2 3.556 6.399e-2 6.228e-2 3.485
v1 0.4566 7.150e-2 3.556 0.4600 8.612e-2 3.486
�1 0.2643 3.984e-2 3.555 0.2665 4.866e-2 3.486
�12 0.0000 — — 0.0000 — —
 1 −7:385e-2 6.4580-3 3.556 −7:326e-2 7.978e-3 3.487
!1 −2:152 0.8816 3.555 −2:181 1.2032 3.485
�P14 −3:727e-3 1.920e-2 3.556 −3:234e-3 2.346e-2 3.487
�P51 −0:5346 1.824e-2 3.556 −0:5341 2.432e-2 3.486
�P35 0.5387 1.011e-2 3.556 0.5380 1.248e-2 3.487

Nu|x=0 4.571 6.670e-3 3.556 4.569 8.170e-3 3.487
Nu|x=W −4:571 6.670e-3 3.556 −4:569 8.170e-3 3.487

û 0.2400 7.400e-5 3.556 0.2391 7.400e-5 3.487
!̂ 2.970 3.110e-3 3.556 3.000 3.690e-3 3.487

Grid: 61× 201 Grid: 81× 401
�xmin: 5.357e-3 �xmin: 3.977e-3
�ymin: 1.479e-2 �ymin: 7.369e-3

Avg. Amp. Period Avg. Amp. Period

u1 6.839e-2 7.292e-2 3.464 6.537e-2 6.432e-2 3.471
v1 0.4638 9.870e-2 3.464 0.4608 8.832e-2 3.471
�1 0.2670 5.564e-2 3.464 0.2671 5.004e-2 3.471
�12 0.0000 — — 0.0000 — —
 1 −7:293e-2 9.238e-3 3.464 −7:313e-2 8.228e-3 3.471
!1 −2:116 1.4162 3.464 −2:195 1.2684 3.471
�P14 −2:705e-3 2.592e-2 3.464 −3:072e-3 2.412e-2 3.471
�P51 −0:5334 2.566e-2 3.465 −0:5340 2.546e-2 3.471
�P35 0.5357 1.272e-2 3.464 0.5379 1.286e-2 3.471

Nu|x=0 4.578 9.290e-3 3.464 4.569 8.410e-3 3.471
Nu|x=W −4:578 9.290e-3 3.464 −4:569 8.410e-3 3.471

û 0.2403 4.100e-5 3.464 0.2388 7.200e-5 3.471
!̂ 3.011 3.780e-3 3.464 3.006 3.780e-3 3.471

algorithm. Testing demonstrated that the implicit treatment of the BTD terms requires that the
BTD coe�cient (see Gresho et al. [8]) be reduced from 1=2 to 3=8—an ad hoc modi�cation
begging for additional analysis.
In the fully implicit projection method, a Galerkin time weighting (i.e. �=2=3) with a

consistent mass matrix was tested on the coarse-grid, and as expected, the backward-Euler
bias proved excessively di�usive producing a steady-state solution. In fact, deviations as small
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Figure 4. Results computed using the fully implicit projection method with variable time-step algorithm
with an error tolerance �=2:5e-4, time-step limit of �tmax = 0:2, and maximum time-step scale factor
DTSF=1:25: (a) temperature time history at point-1, (b) time-step history, and (c) compulsory data for
grid-A (21× 101)—period for temperature oscillation T =3:53617 measured over ≈ 1000 time units.

Table V. Computational resources showing CPU time per grid point per time-step
[�s=node=�t] and memory [Mbytes]. The semi-implicit and fully implicit methods used

a �xed �t=0:05 for all timing comparisons.

Grid resolution

A: 21× 101 B: 41× 201 B+: 61× 201 C: 81× 401
Time-integration
method CPU Memory CPU Memory CPU Memory CPU Memory

Explicit 9.785 3.5 11.18 14.5 9.868 23.4 12.11 67.1
Semi-implicit 33.04 4.2 51.05 17.2 71.10 27.4 104.8 77.8
Fully implicit 41.91 4.2 62.93 17.2 61.10 27.4 107.8 77.8

as 1=100 from �=1=2 in the time-weighting produced steady-state solutions—a surprising
statement of how sensitive the problem is to increased di�usion.

4. SUMMARY AND CONCLUSIONS

The results of this e�ort have demonstrated the sensitivity of the 8:1 thermally driven cavity
to the numerics of the solution method—particularly near the critical Rayleigh number. The
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enhanced phase accuracy of the consistent mass matrix, both for the advective terms and the
buoyancy forces, appears to play an important role in capturing the proper �uid dynamical
behavior. Although not explored in great deal, the variable time-step fully implicit projection
method is a viable alternative to semi-implicit and possibly fully coupled solution methods
with little additional computational cost relative to the semi-implicit method.
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